О 1 Документ подписан простой электронной подписью Информация о владельце: Пробитов Увенцвот в бохаил Борисович Должность: Директор филиала Д. Ф. подписания: 31.10.2025 15:48:59 Уникальный программный ключ: 0189420e1779c9f06d699b725b8e8fb9d59e5c3 Сахар Водород Поваренная соль	
02	
Сложное вещество:	
Кислород	
0	
Мел	
Графит	
Сера	
03	
Символ кальция:	
Ca	
K	
Kr	
Cs	
04	
Четыре молекулы кислорода можно записать как:	

	40
	4H ₂ O
	20 ₂
05	
Эле	мент, атомы которого всегда одновалентны:
	N .
	K
	Ca
	CI
06	
Эле	мент, атомы которого всегда двухвалентны:
	Н
	S
	Ba
	Fe
07	
	ределите валентность азота в молекуле NO ₂
	4

	2
	3
	6
00	
80	
Фор	омула оксида хлора (VII):
	Cl_7O_2
	Cl_2O_7
	CIO ₇
	Cl ₇ O
00	
09	
Опр	ределите относительную молекулярную массу оксида марганца (IV):
	71
	87
	119
	126
10	
	са продуктов реакции в ходе химической реакции:
	О
	увеличивается
	,

	остается неизменной
	уменьшается
	0
	может и уменьшатся, и увеличиваться
11	
	тавьте химическое уравнение по схеме: Li + $N_2 \to Li_3 N$.
	ределите сумму коэффициентов в уравнении реакции.
υπρ	еделите сумму коэффициентов в уравнении реакции.
	5
	6
	8
	9
12	
Эле	менты, которые расположены в третьем периоде, имеют:
	три электрона на внешнем уровне
	всего три электрона
	три энергетических уровня
	заряд ядра, равный +5
13	
Эле	мент, атом которого имеет три электронных уровня и два электрона на внешнем уровне, это
	углерод
	германий

	титан
	магний
L4	
la I	первом энергетическом уровне могут располагаться не более:
	2 электронов
	4 электронов
	6 электронов
	8 электронов
15	
	втором энергетическом уровне могут располагаться не более:
	O
	2 электронов
	6 электронов
	8 электронов
	О
	18 электронов
	16 STERTPORTOR
16	
то	м железа имеет следующее распределение электронов по энергетическим уровням:
	2e, 8e, 14e, 2e
	2e, 8e, 8e, 8e
	2e, 8e, 15e, 1e
	2e, 8e, 16e

Химические свойства элемента определяются: \bigcirc числом нейтронов в ядре атома числом валентных электронов \bigcirc общим числом электронов \bigcirc массовым числом атома 18 Атом кислорода имеет следующее распределение электронов по подуровням: \bigcirc $1s^2 2s^2 2p^4$ \bigcirc $1s^2 2s^2 2p^6 3s^2 3p^4$ \bigcirc $1s^2 2s^2 2p^6$ \bigcirc $1s^2 2s^2 2p^2$ 19 Атом марганца имеет следующее распределение электронов по подуровням: \bigcirc $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^4$ $3d^5$ $4s^2$ \bigcirc $1s^1 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$ \bigcirc $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^5$ $4s^1$ \bigcirc

1	.s ² 2s ² 2p ⁶ 3s ² 3p ⁴ 3d ⁵ 4s ²
20	
Сфер	ическую форму имеют орбитали:
(
S	з - электронов
(
p	э - электронов
(
c	I - электронов
(
f	- электронов
21	
Ганте	леобразную форму имеют орбитали:
(
S	з - электронов
(
p	э - электронов
(
c	I - электронов
(
f	- электронов
22	
Для о	чистки воды от содержащихся в ней нерастворимых частиц, как правило, используют:
(
Į	истилляцию
(
c	отстаивание и фильтрование
(
c	бработку воды хлором
(
C	бработку воды озоном
23	

Для обеззараживания воды, как правило, используют:

	отстаивание
	фильтрование
	перегонку
	обработку воды хлором
24	
24	
Для	я очистки воды от содержащихся в ней растворимых веществ, как правило, используют:
	отстаивание
	фильтрование
	перегонку или дистилляцию
	обработку воды озоном
25	
	ца реагирует с активными металлами, такими как натрий кальций, с образованием:
БОД	
	гидроксидов
	оксидов и водорода
	кислот
	гидроксидов и водорода
26	
Вод	ца реагирует с оксидами активных металлов, таких как натрий и кальций, с образованием:
	О кислот
	кислот

	гидроксидов и водорода
	оксидов и водорода
27	
	рмула оксида марганца семивалентного:
	Mn_2O_3
	Mn_2O_7
	MnO_3
	MnO ₇
28	
Ука	жите формулу оксида, которому соответствует серная кислота ${ m H_2SO_4}$
	SO
	SO ₂
	SO ₃
	SO ₄
29	
	жите вещество X в следующей схеме превращений: $ X \to H_3 PO_4 $
, 7	

	Na_3PO_4
	P ₂ O ₅
	P_2O_3
	HPO ₄
30	
Ука	жите вещество X в следующей схеме превращений:
Cu	\rightarrow X \rightarrow CuSO ₄
	Cu ₂ O
	Cu(OH) ₂
	CuOH
	Cuon
	CuO
31	
He	растворяется в воде основание, формула которого:
	LiOH
	Ba(OH) ₂
	Fe(OH) ₃

 \bigcirc

Ca(OH)₂

32

Укажите уравнение реакции разложения:

 \bigcirc

 $NaOH + HCL \rightarrow NaCL + H_2O$

 \bigcirc

 $\mathsf{Ca}\,+\,\mathsf{CL}_2\to\mathsf{CaCL}_2$

 \bigcirc

 $Zn + CuSO_4 \rightarrow Cu + ZnSO_4$

 \bigcirc

 $2NH_3 \rightarrow N_2 + 3H_2$

33

Укажите уравнение реакции соединения:

 \bigcirc

 $NaOH \, + \, HCL \rightarrow NaCL \, + \, H_2O$

 \bigcirc

 $\mathsf{Ca}\,+\,\mathsf{CL}_2\to\mathsf{Ca}\mathsf{CL}_2$

 \bigcirc

 $\text{Fe} \, + \, \text{CuSO}_4 \rightarrow \text{Cu} \, + \, \text{FeSO}_4$

 \bigcirc

 $2NH_3 \rightarrow N_2 + 3H_2$

34

Алканы имеют общую формулу:

	C_nH_{2n}
	C_nH_{2n-2}
	C_nH_{2n+2}
35	
Вп	рироде алканы встречаются в составе:
	мела, известняка, мрамора
	атмосферного воздуха
	природного и попутного нефтяного газов
26	
36	
Вна	азваниях предельных углеводородов используется суффикс:
	-ен
	-ин
	-ан
	-диен
37	
	перечисленных ниже реагентов пропан будет реагировать с такими, как:
VI3 I	Перечисленных ниже реагентов пропан будет реагировать с такими, как.
	раствор перманганат калия
	О
	хлороводород
	О

	бром
38	
Обц	ая формула алкенов следующая:
	C_nH_{2n+2}
	C_nH_{2n-2}
	C_nH_{2n-4}
	-11 211-4
39	
Наи	более характерными для алкенов реакциями являются:
	замещение
	разложение
	C EDUCCOSTIALISMO
	присоединение
40	
При	соединение хлороводорода к 3,3-дифторпентену-1 сопровождается образованием:
	2-хлор-3,3-дифторпентана
	1-хлор-3,3-дифторпентана
	1,2-дихлор-3,3-дифторпентана
41	
	ны имеют общую формулу:
	C_nH_{2n+2}

	C_nH_{2n}
	C_nH_{2n-2}
42	
Сре	ди нижеперечисленных алкиновых изомерами являются:
	бутим-1 и 3-метилпентин
	пропин и бутин-2
	3-метилпентин-1 и гексин-2
43	
Вна	азваниях ацетиленовых углеводородов используется суффикс:
	-ан
	-ен
	-диен
	-ин
44	
При	взаимодействии пропила с избытком бромоводорода образуется:
	1,3-дибромпропан
	1,2-дибромпропан
	1,1-дибромпропан
	2,2-дибромпропан

45	
Диеновые углеводороды имеют общую формулу:	
C_nH_{2n}	
C_nH_{2n+2}	
C_nH_{2n-2}	
46	
Изомерами можно считать:	
0	
бутадиен-1,3 и 2-метилбутадиен-1,3	
пропадиен и бутадиен-1,2	
3-метилпентадиен-1,4 и 2-метилпентадиен-1,4	
47	
Бутадиен-1,3 иначе называют:	
изопрен	
хлоропрен	
дивинил	
48	
Для диеновых углеводородов наиболее типичными являются реакции:	
замещения	
разложения	

	полимеризации
49	
Ист	очниками получения бензола и его гомологов являются:
	природный и попутный нефтяной газы
	этиленовые углеводороды
	нефть и каменный уголь
Pac	есь этана и этилена объемом 200 мл. (нормальные условия) обесцветила бромную воду массой 25 г. ссчитайте объемную долю этанола в смеси, если массовая доля брома в бромной воде равна 3,2%. берите один верный ответ (или более близкий по значению) из представленных пяти:
	56%
	43,6 %
	38%
	27%

Submit