Документ подписан простой электронной подписью Информация о владельце:

ФИО: Мильчаков Михатр Борисович Должность: Директор филиала перечень заданийдля проведения диагностического Должность: Директор филиала подписания: 31 Тестирования при аккредитационном мониторингепо дисциплине Уникальный программный ключ: ОП. 04 Прикладная математикадля специальности 01f99420e1779c9f06d699b735b892fb3c59 Строительство железных дорог, путь и путевое хозяйство

- **1.** Число i это число, квадрат которого равен...
- **2.** Вычислите i^{35}
- **3.** Вычислите i^{42}
- **4**. Вычислите i^{144} .
- 5. Сколько форм записи имеет комплексное число?
- 6. Выберите из предложенных чисел чисто мнимое:
 - 1) z = 5 3i
 - 2) z = 75i
 - 3) z = 32
 - 4) z = 0
- **7**. Вычислите сумму чисел $z_1 = 7 + 2i$ и $z_2 = 3 + 7i$:
 - 1) *10*+*9i*
 - 2) *4-5i*
 - 3) *10-5i*
 - 4) 4+5i
- **8**. В какое множество входят числа *5*; *3-6i*; *2*,*7*; *2i*?
 - 1) действительные числа
 - 2) рациональные числа
 - 3) комплексные числа
 - 4) иррациональные числа
- 9. Кто ввёл название «мнимые числа»?
 - Декарт
 - Арган
 - 3) Эйлер
 - 4) Кардан
- **10**. Модуль комплексного числа 3+4i равен...
- **11**. В какой координатной четверти лежит конец радиус-вектора, задающего комплексное число z = -5 + 2i?

12. Установите соответствие между комплексным числом и его аргументом

КОМПЛЕКСНОЕ ЧИСЛО

A)
$$\sqrt{3} + i$$

Б)
$$\sqrt{3} - i$$

B)
$$-\sqrt{3} + i$$

$$\Gamma$$
) $-\sqrt{3}-i$

АРГУМЕНТ

1)
$$\frac{5\pi}{6}$$

2)
$$\frac{11\pi}{6}$$

3)
$$\frac{7\pi}{6}$$

4)
$$\frac{\pi}{6}$$

Данные занесите в таблицу:

A	Б	В	Γ

13. Если 2+3i, то сопряжённое ему комплексное число равно...

14. Установите соответствие между алгебраической формой комплексного числа и его тригонометрической формой

АЛГЕБРАИЧЕСКАЯ ФОРМА

A)
$$z = 1 + i \frac{\sqrt{3}}{3}$$

$$\mathbf{E}$$
) $z = 1 + i$

B)
$$z = -2 + i \cdot 2\sqrt{3}$$

ТРИГОНОМЕТРИЧЕСКАЯ

ФОРМА

$$1) \quad z = 4 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$$

2)
$$z = \frac{2}{3}\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

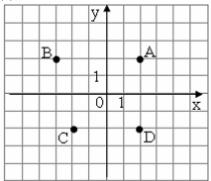
$$3) \quad z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

Данные занесите в таблицу:

,,	тицу.		
	A	Б	В

15. Модуль комплексного числа z = 6 + 8i равен...

16. Найдите |z|, если $z = -\sqrt{11} + 5i$.


17. Алгебраическая форма комплексного числа, изображённого на рисунке

имеет вид:

- 1) $z = \sqrt{3}$
- 2) z = 2 + i
- 3) z = 1 2i
- 4) z = 1 + 2i

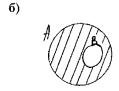
18. Комплексные числа заданы точками на плоскости

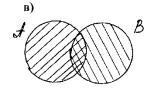
Тогда комплексно-сопряженными числами являются...

- 1) A и D
- 2) *A* и *B*
- 3) *A* и *C*
- 4) *D* и *C*

19. Сколько значений существует у корня n-й степени (отличной от нуля) из комплексного числа?

20. Определить какое из множеств является подмножеством (включено в) $A=\{10, 20, 30, 40, 50, 60\}$.


- 1) {10, 20, 30, 40, 50, 60, 70}
- 2) {10}
- 3) {10, 35}
- 4) {10, 20, 30, 40, 50, 70}


21. Найти $A \cup B$, если $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.

22. Найти $A \cap B$, если $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.

- **23**. Найти $A \cap B$, если $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 2, 3, 4\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **24**. Найти $A \cup B$, если $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 2, 3, 4\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания
- 25. На каком рисунке изображено объединение множеств А и В?

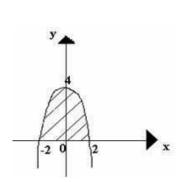
- **26**. Даны три множества $A=\{1,2,3,\ldots,37\}$, $B=\{2,4,6,8,\ldots\}$, $C=\{4,8,12,16,\ldots\}$. Какое утверждение верно?
 - 1) A⊂B
 - 2) B⊂C
 - 3) C⊂A
 - 4) C⊂B
- **27**. Найти $A \setminus B$, если $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 2, 3, 4\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **28**. Найти A\B, если $A=\{2,3,8,11\}$, $B=\{5,11\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **29**. Даны три множества $A=\{a,b,c,d\}$, $B=\{c,d,e,f\}$, $C=\{c,e,g,k\}$. Найдите $(A \cup B) \cup C$. В ответ запишите элементы множества в порядке возрастания без пробелов и знаков препинания.
- **30**. Найдите $A \cap B$, если $A = \{3;4;5\}$, $B = \{3;5;6\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **31**. Найдите $A \cup B$, если $A = \{0;1;7;8\}$, $B = \{-7;0;6;9\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **32**. Найдите $A = \{0;1;7;8\}$, $B = \{-7;0;6;9\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **33**. Найдите в\A, если $A=\{0;1;7;8\}$, $B=\{-7;0;6;9\}$. В ответ запишите числа в порядке возрастания без пробелов и знаков препинания.
- **34**. Вставьте пропущенную функцию (_____)' = $\frac{1}{\cos^2 x}$

- **37**. Вставьте пропущенную функцию $\left(\underline{}\right)' = \frac{1}{x}$
- 38. Чему равна производная 5?
- **39**. Чему равна производная функции f(x) = x?
- **40**. Чему равна производная функции $f(x) = x\sqrt{x}$?
 - $1) \quad \frac{3}{2\sqrt{x}}$
 - $2) \quad \frac{2\sqrt{x}}{3}$
 - $3) \quad \frac{2}{3\sqrt{x}}$
 - 4) $1,5\sqrt{x}$
- **41**. Производная функции $y = x^2 \cdot e^x$ имеет вид:
 - $1) \quad y' = 2x \cdot e^x + x^2 \cdot e^x$
 - $2) \quad y' = 2x \cdot e^x$
 - $3) \quad y' = 2x \cdot e^x x^2 \cdot e^x$
 - $4) \quad y' = 2x + e^x$
- **42**. Вторая производная y''(x) функции $y = x^2 3x + 1$ равна...
- **43**. Угловой коэффициент касательной к графику функции $y = x^2 + 2x 4$ в точке $x_0 = -1$ равен...
- **44**. Материальная точка движется по закону $x(t) = -\frac{1}{3}t^3 + 2t^2 + 5t$. Найти скорость в момент времени t=5 с. (Перемещение измеряется в метрах.)
- **45**. Материальная точка движется по закону $x(t) = t^3 4t^2$. Найти ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)
- **46**. Материальная точка движется по закону $x(t) = \frac{1}{4}t^4 + t^2$. Найти скорость в момент времени t=2 с. (Перемещение измеряется в метрах.)

47 . Материальная точка движется по закону $x(t) = \frac{1}{4}t^4 + t^2$. Найти ускорение в
момент времени $t=2$ с. (Перемещение измеряется в метрах.)
48 . Материальная точка движется по закону $x(t) = t^4 - 2t$. Найти скорость в момент времени t =3 с. (Перемещение измеряется в метрах.)
49 . Материальная точка движется по закону $x(t) = t^4 - 2t$. Найти ускорение в момент времени t =3 с. (Перемещение измеряется в метрах.)
50 . Скорость движения точки изменяется по закону $v = 3t^2 + 2t + 1$ (м/с). Найти путь S в метрах, пройденный точкой за 10 с от начала движения.
51 . Вставьте пропущенное слово. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные
 52. Почему дифференциал функции можно использовать в приближенных вычислениях? 1) Дифференциал всегда является точным числом 2) Различные формы записи дифференциала означают одно и то же 3) Дифференциал обладает свойствами, аналогичными свойствам производной 4) Чем меньше приращение независимой переменной, тем большую долю приращения функции составляет дифференциал
53 . Вставьте пропущенное слово. Дифференцируемая функция может иметь экстремум в тех точках, где равна нулю и не существует.
54 . Вставьте пропущенное слово. Виды асимптот: вертикальные, горизонтальные и
 55. Если во всех точках некоторого интервала f''(x)<0, то неверно: 1) кривая выпукла в этом интервале 2) график находится ниже любой касательной 3) функция имеет минимум 4) исследованы знаки второй производной слева и справа от каждой возможной точки
56 . Вставьте пропущенное слово. Множество первообразных для данной функции $f(x)$ называется неопределенным

57. Вставьте пропущенное слово.

Операция нахождения неопределенного интеграла называется



58. Вставьте пропущенное слово.

Непосредственное интегрирование, метод подстановки, интегрирование

по частям это методы _____

- 59. Чему равен определенный интеграл с одинаковыми пределами?
- **60**. Вставьте пропущенную функцию: $\int \cos x dx = ... + C$
- **61**. Вставьте пропущенную функцию: $\int \sin x dx = ... + C$?
- **62**. Вставьте пропущенную функцию: $\int \frac{dx}{\cos^2 x} = ... + C$?
- **63**. Определенный интеграл $\int_{2}^{3} 3x^2 dx$ равен...
- **64**. Множество всех первообразных функции y = 2x имеет вид:
 - 1) 2
 - 2) x^{2}
 - 3) $2x^2 + c$
 - 4) $x^2 + c$
- **65**. Определенный интеграл $\int_{1}^{2} 4x^{3} dx$ равен...
- **66**. Определенный интеграл $\int_{0}^{2} (x-3) dx$ равен...
- **67.** Определенный интеграл $\int_{0}^{3} (2x^{2} + 4) dx$ равен...
- 68. Каким интегралом определяется площадь криволинейной трапеции D?

1)
$$\int_{0}^{4} (4-x^2)dx$$

$$2) \int_{-2}^{2} (4 - x^2) dx$$

3)
$$\int_{-2}^{0} (4-x^2) dx$$

4)
$$\int_{0}^{2} (4-x^{2}) dx$$

- **69**. В результате подстановки t = 3x + 2 интеграл $\int \frac{dx}{\sqrt{3x + 2}}$ приводится к виду:
 - 1) $\int \frac{dt}{\sqrt{t}}$
 - $2) \ \frac{1}{3} \int \frac{dt}{\sqrt{t}}$
 - 3) $3\int \frac{dt}{\sqrt{t}}$
 - 4) $\int \frac{dx}{\sqrt{t}}$
- 70. Какое из следующих равенств записано верно?
 - 1) $\int x^3 dx = 3x^2 + C$;
 - 2) $\frac{dx}{x} = lnx + C$;
 - 3) $\int (1+x)dx = x + \frac{x^2}{2} + C$.
- **71**. Какие из следующих уравнений являются дифференциальными? *В ответ запишите последовательность номеров в порядке возрастания без знаков препинания.*
 - 1) yy'+2=0;
 - 2) $3^{y}+y=3$;
 - 3) $\frac{dv}{dt} = 3v$.
 - 4) y"=sinx;
 - 5) $x(y^2-1)dx+y(x^2+1)dy=0$.
- **72**. Какие из следующих уравнений не являются дифференциальными? B ответ запишите последовательность номеров в порядке возрастания без знаков препинания
 - 1) yy'+2=0;
 - 2) $3^{y}+y=3$;
 - 3) $\frac{dv}{dt} = 3v$.

- 4) y"=sinx;
- 5) $x(y^2-1)dx+y(x^2+1)dy=0$.
- **73**. Сколько постоянных интегрирования имеет общее решение дифференциального уравнения второго порядка?
- **74**. Сколько постоянных интегрирования общее решение имеет дифференциального уравнения первого порядка?
- **75**. Чему равно решение дифференциального уравнения $dy = e^x dx$?
 - 1) $y = -e^{x} + C$ 2) $y = \ln x + C$ 3) $y = e^{x} + C$

 - $y = -\ln x + C$
- **76**. Чему равно решение дифференциального уравнения $dy = \cos x dx$?
 - 1) $y = \sin x + C$
 - 2) $y = -\cos x + C$ 3) y = tgx + C

 - 4) $y = -\sin x + C$
- **77**. Дифференциальное уравнение $\cos y dx x^2 dy = 0$ в результате разделения переменных сводится к уравнению
 - 1) $\frac{dx}{x} = \frac{dy}{\cos^2 y}$
 - $2) \ \frac{\cos y dx}{x^2} = dy$
 - 3) $\frac{dx}{x^2} = \frac{dy}{\cos^2 y}$
 - 4) $\cos y dx = x^2 dy$
- **78**. В результате подстановки $y = u(x) \cdot v(x)$ уравнение $y' \frac{y}{x} = e^x$ примет вид
 - 1) $u'v + u(v' \frac{v}{x}) = e^x$
 - 2) $u' + v' \frac{uv}{v} = e^x$
 - 3) $u'v u(v' + \frac{v}{r}) = e^x$
 - 4) $u'v + \frac{uv}{v} = e^x$

 79. Определите вид дифференциального уравнения у'=x+1: 1) линейное 1-го порядка; 2) однородное; 3) 2-го порядка с постоянными коэффициентами; 4) с разделяющимися переменными.
 80. Решить задачу Коши – это найти 1) общее решение дифференциального уравнения; 2) начальные условия; 3) произвольную постоянную С; 4) частное решение дифференциального уравнения.
81 . Каков общий вид дифференциального уравнения первого порядка с разделяющимися переменными: 1) $f(x)dx=\phi(y)dy;$ 2) $f(x)F(y)dx+\phi(y)\Phi(x)dy=0.$ 3) $y'+py=q$ 4) $y''+py'+qy=0$
82 . Вставьте пропущенное слово. Задача отыскания конкретного частного решения дифференциального уравнения по начальным данным, называется задачей
83 . Вставьте пропущенное слово. Наивысший порядок производной, входящей в уравнение, называется дифференциального уравнения.
84 . Вставьте пропущенное слово. Дифференциальным уравнением называется уравнение, содержащее искомой функции или ее дифференциалы
85 . Вставьте пропущенное слово. Геометрически общее решение дифференциального уравнения представляет собой совокупность кривых.
86 . Чему равен 5-ый член последовательности $x_n = \frac{1}{2n}$?
87 . Чему равен 4-ый член последовательности $x_n = \frac{n}{n^2+4}$?
88 . Чему равен 5-ый член последовательности $x_n = \frac{(-1)^n}{n}$?
89 . Чему равен 6-ый член последовательности $x_n = 4n^2 + 2^n + 1$?

- **90**. Чему равен 3-ый член последовательности $x_n = \left(-\frac{1}{2}\right)^n$?
- **91.** Ряд $\cos x + \frac{\cos^2 x}{2} + \frac{\cos^3 x}{6} + \frac{\cos^4 x}{24} + \dots$ является...
 - 1) степенным
 - 2) функциональным
 - 3) знакочередующимся
 - 4) знакоположительным
- **92**. Ряд $1+\frac{1}{2}x+\frac{1}{4}x^2+\frac{1}{8}x^3+...$ является
 - 1) знакочередующимся
 - 2) функциональным
 - 3) степенным
 - 4) знакоположительным.
- **93**. Дан ряд $\sum_{n=1}^{\infty} \frac{n}{10n+1}$. Используя необходимое условие сходимости ряда, сделайте вывод
 - 1) ряд расходится
 - 2) ряд сходится
 - 3) нельзя определить сходится или расходится ряд
 - 4) другой ответ
- **94**. Дан ряд $\sum_{n=1}^{\infty} \frac{2n+1}{2n-1}$. Используя необходимое условие сходимости ряда сделайте вывод
 - 1) ряд сходится
 - 2) ряд расходится
 - 3) нельзя определить сходится или расходится ряд
 - 4) другой ответ.
- **95**. Ряд $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ исследовали на сходимость по признаку Коши, вычислили предел $k = \lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{3}$. Тогда можно сделать вывод, что ...
 - 1) данный рад сходится
 - 2) данный ряд расходится
 - 3) данный ряд может как сходиться так и расходиться.
 - 4) данный ряд не существует

96. Ряд $\sum_{n=1}^{\infty} \frac{5^n}{n}$ исследовали на сходимость по признаку Даламбера, вычислили

предел $d = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 5$. Тогда можно сделать вывод, что...

- 1) данный рад сходится
- 2) данный ряд расходится
- 3) данный ряд может как сходиться так и расходиться.
- 4) данный ряд не существует
- **97**. Найдите сумму рада $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$
- **98**. Найдите сумму ряда: $\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$

99. Установите между рядом и его названием.

Название	Ряд
А. Рад с положительными	1) $\sin x + \sin^2 x + \sin^3 x + \sin^4 x +$
членами Б. Знакочередующийся ряд В. Степенной ряд Г. Функциональный ряд	2) $1+2x+3x^2+4x^3+$ 3) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+$ 4) $1-2+3-4+5-6+$

Данные занесите в таблицу:

A	Б	В	Γ

100. Установите между рядом и его названием.

Название	Ряд
А. Рад с положительными членами Б. Знакочередующийся ряд В. Степенной ряд Г. Функциональный ряд	1) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ 2) $x + x^2 + x^3 + x^4 + x^5 + \dots$ 3) $1 + 2 + 3 + 4 + 5 + 6 + \dots$ 4) $\cos x + \cos^2 x + \cos^3 x + \cos^4 x + \dots$

Данные занесите в таблицу:

A	Б	В	Γ		

101. Установите соответствие между числовым рядом и его общим членом a_n

Ряд	O бщий член ряда $a_{_n}$
A. $\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$	1) $a_n = \frac{1}{n+2}$
B. $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$	2) $a_n = \frac{1}{2n}$

B.	1	1	1	1
	3	5	7	9

$$\Gamma$$
. $\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ...$

3)
$$a_n = \frac{1}{2n+1}$$

4)
$$a_n = \frac{1}{2n-1}$$

Данные занесите в таблицу:

A	Б	В	Γ

102. Установите соответствие между числовым рядом и его общим членом a_n

Ряд	O бщий член ряда $a_{\scriptscriptstyle n}$
A. $\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$	1) $a_n = \frac{1}{n+2}$
$\mathbf{F}. \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$	2) $a_n = \frac{1}{2n}$
B. $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+$	3) $a_n = \frac{1}{2^n}$
Γ . $\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots$	4) $a_n = \frac{1}{n^2}$

Данные занесите в таблицу:

A	Б	В	Γ

103. Проверить, выполняется ли необходимое условие сходимости для ряда:

$$\sum_{n=1}^{\infty} \frac{2n-1}{3n+1}$$

- 1) может сходиться
- 2) сходится
- 3) расходится
- 4) ответа не дает

104. Вычислите: $P_7 =$

105. Вычислите: $A_8^4 =$

106. Вычислите: $C_7^3 =$

107. Вычислите: $P_5 =$

108. Вычислите: $A_8^5 =$

109. Вычислите: $C_7^5 =$

110. Вычислите: P_4 =

111. Вычислите: $C_{10}^5 =$

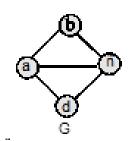
112. Вычислите: *P*₃ =

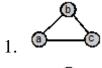
113. Вычислите: $C_{12}^5 =$

- . Сколькими способами можно составить расписание одного учебного дня из 5 различных дисциплин?
- **115**. Сколько существует различных двузначных чисел, в записи которых можно использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?

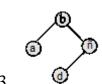
116. Вычислить: 6! -5!

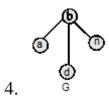
- . В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика. Какова вероятность того, что выбранный наугад шарик будет белым? Ответ округлите до десятых.
- . Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?
- . В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и 800 денежных выигрышей. Какова вероятность выигрыша?
- . Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?
- . Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить, если в каждый салат должно входить 2 различных вида овощей?
- **122**. Вычислите: $\frac{8!}{6!}$
- . В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта туз? Ответ округлите до сотых.
- . Бросают два игральных кубика. Какова вероятность того, что выпадут две четные цифры?
- . В корзине лежат грибы, среди которых 10% белых и 40% рыжиков. Какова вероятность того, что выбранный гриб белый или рыжик?
- . Сколькими способами можно расставить 4 различные книги на книжной полке?

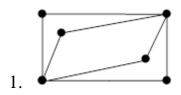

- . В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?
- **128**. Сократите дробь: $\frac{(n+1)!}{n!}$
- 129. Какова вероятность, что при одном броске игрального кубика выпадает число очков, равное четному числу?
- . Катя и Аня пишут диктант. Вероятность того, что Катя допустит ошибку, составляет 60%, а вероятность ошибки у Ани составляет 40%. Найти вероятность того, что обе девочки напишут диктант без ошибок.
- . Завод выпускает 15% продукции высшего сорта, 25% первого сорта, 40% второго сорта, а все остальное брак. Найти вероятность того, что выбранное изделие не будет бракованным.
- . Сколькими способами могут встать в очередь в билетную кассу 5 человек?
- 133. Сколько существует трехзначных чисел, все цифры которых нечетные и различные.
- **134**. Упростите выражение: $\frac{(n+1)!}{(n-1)!}$
- . Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания первого стрелка составляет 90%, второго 80%, третьего 70%. Найдите вероятность того, что все три стрелка попадут в мишень?
- . Из 30 учеников спорткласса, 11 занимается футболом, 6 волейболом, 8 бегом, а остальные прыжками в длину. Какова вероятность того, что один произвольно выбранный ученик класса занимается игровым видом спорта? Ответ округлите до десятых.
- . Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов?
- . Какова вероятность того, что выбранное двузначное число делится на 12? Ответ округлите до десятых.
- . Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у Николая составляет 70%, а у Леонида 30%. Найдите вероятность того, что Леонид допустит ошибку, а Николай нет.

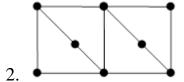

- **140**. В ящике лежат карточки с буквами, из которых можно составить слово «электрификация». Какова вероятность того, что наугад выбранная буква окажется буквой «к»? Ответ округлите до сотых.
- **141**. Предельная относительная погрешность произведения находится по формуле
 - 1) $\delta(xy) = \delta x + \delta y$
 - 2) $\delta(xy) = \delta x \delta y$
 - 3) $\delta(xy) = \delta x * \delta y$
 - 4) $\delta(xy) = \delta x / \delta y$
- 142. В чем заключается задача отделения корней?
 - 1) В установлении количества корней
 - 2) В установлении количества корней, а так же наиболее тесных промежутков, каждый из которых содержит только один корень.
 - 3) В установлении корня решения уравнения
 - 4) В назначении количества корней
- 143. К методам уточнения корней не относится ...
 - 1) Метод дихотомии
 - 2) Метод хорд
 - 3) Метод касательных
 - 4) Метод аппроксимации
- **144**. Интерполяция это...
 - 1) Способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений
 - 2) Продолжение функции, принадлежащей заданному классу, за пределы ее области определения.
 - 3) Замена одних математических объектов другими, в том или ином смысле близким к исходным.
 - 4) Метод решения задач, при котором объекты разного рода объединяются общим понятием.

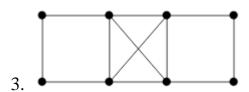
145. Итерация – это


- 1) Повторение. Результат повторного применения какой—либо математической операции.
- 2) Замена одних математических объектов другими, в том или ином смысле близким к исходным.
- 3) Число, изображаемое единицей и 18 нулями
- 4) Продолжение функции, принадлежащей заданному классу, за пределы ее области определения.


- **146**. В основе какого метода лежит идея графического построения решения дифференциального уравнения, однако этот метод дает одновременно и способ нахождения искомой функции в численной форме?
 - 1) Метод Лагранжа
 - 2) Метод границ
 - 3) Метод Коши
 - 4) Метод Эйлера
- 147. Конечными разностями первого порядка называют
 - 1) Сумму соседних узлов интерполяций
 - 2) Разность между значениями функций в соседних узлах интерполяции
 - 3) Сумму между значениями функций в соседних узлах интерполяции
 - 4) Произведение значений трех соседних узлов интерполяции
- 148. Точки графа называются его ...
- 149. Линии графа называются...
- 150. Если существует ребро, инцидентное двум вершинам графа, то эти вершины являются...
- 151. Ребро, имеющее совпадающие начало и конец, называется...
- **152**. Какие из графов являются подграфами данного графа G?







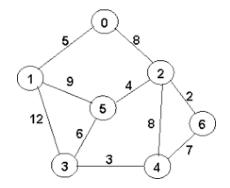
153. Какой граф является гамильтоновым:

- 154. Граф содержит 7 дуг. Из скольки дуг будет состоять его эйлеров цикл?
- 155. Сколько вершин содержит гамильтонов цикл графа с 5 вершинами?
- **156**. Конечный связный граф с выделенной вершиной (корнем), не имеющий циклов, называют...
- **157**. Глубина элемента а₂ в представленном дереве равна...

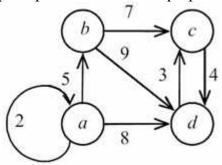
158. Степень вершины а₂ в представленном графе равна...

159. Упорядоченное объединение деревьев, представляющее собой несвязный граф, называется...

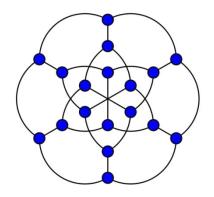
- **160**. Если граф имеет матрицу смежности и не имеет петель, на главной диагонали у него всегда стоят...
- **161.** Если вершине инцидентна петля, то степень этой вершины равна (запишите число).
- 162. Чему равна степень изолированной вершины графа?

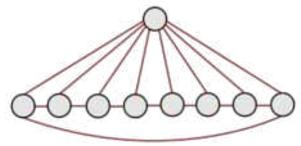

163. Установите соответствие:

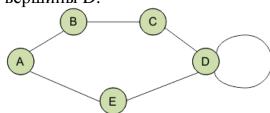
установите соответствие:		
А. Граф со смежными вершинами	1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Б. Полный граф	2.	C G S O D G
В. Граф со смежными ребрами	3.	G_2
Г. Граф с петлей	4.	X_1 X_2 X_3 X_4 X_5 X_5 X_2 X_3 X_4 X_5


Занесите данные в таблицу:

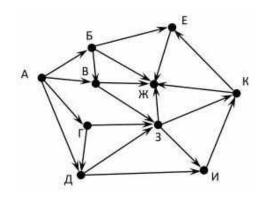
A	Б	В	Γ

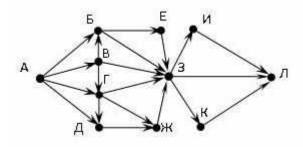

- **164**. Предел функции $\lim_{x\to\infty} \frac{5}{4x+1}$ равен
- **165**. Предел функции $\lim_{x\to\infty} \frac{5}{1-x^2}$ равен
- **166**. Предел функции $\lim_{x\to\infty} (2x^3 + 1)$ равен
- **167**. Предел функции $\lim_{x\to\infty} \frac{1}{x+3}$ равен
- **168**. Предел функции $\lim_{x\to\infty} \frac{3}{2x+1}$ равен
- **169**. Предел функции $\lim_{x\to 1} (x^3 2x + 1)$ равен
- **170**. Предел функции $\lim_{x\to 2} (x^2 2x + 1)$ равен
- **171**. Предел функции $\lim_{x\to 0} (x^4 2x + 2)$ равен
- **172**. Предел функции $\lim_{x\to 1} (x^3 x^2 + x + 1)$ равен
- **173**. Предел функции $\lim_{x\to 2} (x^3 4x)$ равен
- **174**. Значение предела $\lim_{x\to -2} \frac{(2+x)(3+x)}{4-x^2}$ равно:
- **175**. Вычислите: $\lim_{x\to\infty} (3-\frac{5}{x^3})$.
- **176**. Укажите приближенное значение числа e с точностью до десятых.
- **177**. Чему равен предел: $\lim_{x\to\infty} (1+\frac{1}{x})^x$.
- **178**.Третий член ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$ равен...
- **179**.Третий член ряда $\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{3n+1}$ равен...
- 180. Укажите число вершин в представленном графе.


181. Укажите число ребер в представленном графе:

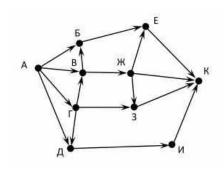

182. Укажите число вершин в представленном графе.

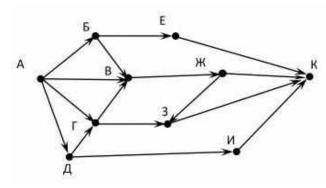
183. Укажите число ребер в представленном графе:

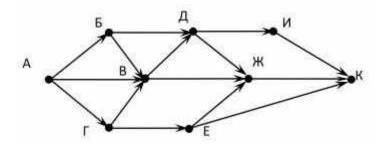

184. Укажите степень вершины D.

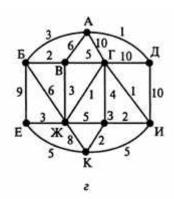

185. Вставьте пропущенное число.

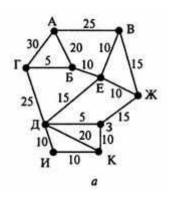
Число нечетных вершин любого графа является числом.

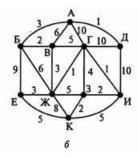

186. На рисунке - схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Ж?

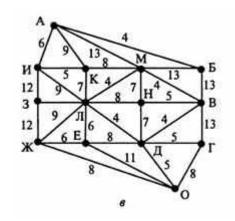

187. На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Л?


188. На рисунке - схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?


189. На рисунке - схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

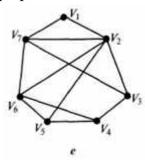

190. На рисунке - схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?


191. Рыцарь, находясь в пункте А, узнал, что Прекрасной Даме, в пункте К, через 14 часов может грозить опасность. Взяв с собой карту, он немедленно выехал на помощь. Числа на рисунке обозначают время движения (в часах) от пункта до пункта. Успеет ли рыцарь спасти Прекрасную Даму? (Ответ запишите в форме: Нет АБЕК 17 или Да АБЕК 17)


192. Винни-Пух вышел на прогулку, взяв с собой карту. Числа на рисунке обозначают время движения (в минутах) от пункта до пункта. Помогите Винни-Пуху найти кратчайший путь от своего дома в пункте А до дома Пятачка в пункте К. Перечислите пункты, через которые должен пройти Винни-Пух, и подсчитайте время, которое он затратит на весь путь. (Ответ запишите в форме: АВЖЗДК 80)

193. Атос поскакал в гости к Портосу, взяв с собой карту. Числа на рисунке обозначают время движения (в часах) от пункта до пункта. Помогите Атосу найти кратчайший путь от своего поместья в пункте Е до поместья Портоса в пункте Д. Перечислите пункты, через которые должен проехать Атос, иподсчитайте время, которое он затратит на весь путь. (Ответ запишите в форме: ЕКЗИГД 20)

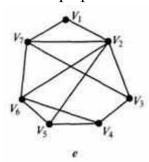
194. Рыцарь, находясь в пункте A, узнал, что Прекрасной Даме, в пункте O, ровно через сутки может грозить опасность. Взяв с собой карту, он немедленно выехал на помощь. Числа на рисунке обозначают время движения (в часах) от пункта до пункта. Успеет ли рыцарь спасти Прекрасную Даму? Обоснуйте ответ, указав кратчайший маршрут и время, затраченное на весь путь. (Ответ запишите в форме: Нет АБВГО 38 или Да АБВГО 38)

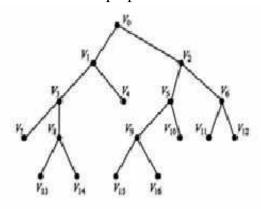


195. Лес состоит из 10 деревьев. Всего в лесу 200 вершин. Сколько в нём рёбер?.

196. Сколько всего рёбер в графе, степени вершин которого равны 3, 4, 5, 3, 4, 5, 3, 4, 5?

197. Какое минимальное количество рёбер нужно убрать из полного графа с 15 вершинами, чтобы он перестал быть связным?


198. Укажите степени вершин графа.


Данные занесите в таблицу:

Вершина	V_{I}	V_2	V_3	V_4	V_5	V_6	V_7
Степень вершины							

199. Найдите цикломатическое число графа G

200. Найдите цикломатическое число графа G

