Јокумент подписан простой электронной подписью
информация о владельце: В межунь Михом Видельце
lолжность: Директор филиала ' laта подписания: 29.10.2025 16:51:05
1f99420e1779c9f06d699b725b8e8fb9d59e5c3
Анод и Катод
○ Сток, исток и затвор
Эмиттер, Коллектор, база
Диод
Диод обладает
одним p-n переходом
двумя взаимодействующими p-n переходами
3-мя и более p-n переходами.
Диоды
Выпрямительный диод используется для
Для работы в ВЧ электромагнитном поле
стабилизации напряжения
выпрямления(преобразования из переменного в постоянный) электрического тока
Проводимость
К типу проводимости относится:
· · · · · · / · · · · · · · · · · ·

П	озитронная проводимость
Э.	лектронная проводимость
Н	ейтронная проводимость
Свой	ства диода
Основ	ное свойство диода:
И	злучение света
0	дносторонняя проводимость
П	реобразование магнитного поля
Свой	ства Диода
Диод в	в открытом состоянии:
Н	е пропускает ток
П	ропускает ток
П	реобразует магнитное поле
Сопр	отивление
Сопро	тивление - это
CI	пособность тела, препятствовать прохождению электрического тока.

способность тела пропускать через себя электрический ток.
параметр, определяющий поглощение энергии тела
Тепловой пробой
В случае теплового пробоя полупроводника:
происходит разрушение его структуры(сгорает)
увеличивается сопротивление
улучшается добротность
р-п переход
p-n переход - это область перехода между двумя типами проводимости полупроводника.
ВерноНеверно
Прямое смещение p-n перехода
Прямое смещение p-n перехода - такое смещение, при котором область р проводимости подключена к положительному полюсу("+"), а n область к отрицательному("-")
ВерноНеверно
р-п переход
Рекомбинация это
Взаимное исчезновение электронно-дырочной пары, сопровождающееся выделением энергии
Увеличение потенциального барьера

р-п переход

Рекомбинация это

Взаимное исчезновение электронно-дырочной пары, сопровождающееся выделением энергии

Увеличение потенциального барьера

тепловой пробой диода

р-п переход

Генерация - это

создание электронно-дырочной пары, происходящее при поглощении энергии

уничтожение электронно-дырочной пары, при выделении энергии

○Увеличение заряда ионов, путём создания газового разряда

БПТ

Биполярный транзистор - это полупроводниковый прибор, с ... и 3-мя и более выводами

○ одним p-n переходом

с двумя взаимодействующими p-n переходами

с 3-мя и более p-n переходами

Простейший биполярный транзистор имеет три вывода: Эмиттер, база и
Исток
Анод
Коллектор
Инжекция
Процесс введения носителей заряда, создающих (неравновесную) концентрацию в полупроводниковом слое (транзистора), называется
Инжекцией
Экстраполяцией
Апроксимацией
Режимы работы бпт
Режимы работы биполярного транзистора называются
Анодный, катодный
Активный, насыщения, отсечки
Эмиттерный, базовый
схема включения бпт
При какой схеме включения биполярного транзистора, он обеспечивает максимальное усиление по мощности?
С общей базой

с общим эмиттером
с общим катодом
схема включения бпт2
При какой схеме включения биполярного транзистора, он обеспечивает максимальное входное сопротивление:
С общим анодом
С общей базой
С общим коллектором
Схема включения бпт3 При какой схеме включения биполярного транзистора, он не обеспечивает усиления по току С общим эмиттером
С общей базой
С общим коллектором
МТВ
Ждущий мультивибратор имеет два состояния: устойчивое и
асинхронное
смещённого перехода

M	П	П	R	1

Мультивибратор, как релаксационный генератор, может работать в следующих режимах:

автоколебательный, ждущий, синхронизации

электромагнитного излучения, поглощения

Синхронизации, ожидания, релаксации

MTB2

Сколько автоколебательный мультивибратор имеет квазиустойчивых состояний

1

2

4

MTB7

На схеме изображён:

Мультивибратор

Транзистор

Фотодиод

T2
Устройство с двумя устойчивыми состояниями способное переходить скачком одного в другое состояние при поступлении на его вход управляющего сигна.
Однокаскадный усилитель
Триггер
Микропроцессор
T3
Для чего используются триггеры с раздельным запуском.
для пропускания импульсных сигналов
Для запоминания информации как электронный коммутатор
Для выделения сигнала и его преобразования
ЦС
В какой форме представляют цифровую информацию?
В восьммеричной
в пятиричной
в двоичной
ЦС2

Наличие "0"	означает:
наличие	мощного импульса, высокий уровень потенциала
\bigcirc	
отсутств	ие импульса или низкий уровень потенциала
0	
наличие	радиопомех
ЦС3	
	еских элементов посредством которых можно реализовать любую нкцию называется
\bigcirc	
Базисом	
Установ	кой
\bigcirc	
Основан	ием
ЭР	
На фотограф 房	ии изображено
Электро	магнитное реле
Солнечн	ая батарея
\circ	
Полевой	і́ транзистор

Отклонения напряжения или тока от первоначального значения в течение короткого промежутка времени называют

И1

C	
Эл	лектрическим импульсом
C	
Ма	агнитным резонансом
C	
CE	ВЧ-волной
И2	
⁄/мпулі	ьсная последовательность характеризуется следующими параметрами
C	
цν	иклическая частота, входное сопротивление,коэффициент усиления.
C	
На	апряжение на входе, напряжение на выходе, входная проводимость
C	
an	мплитуда, время нарастания и спада импульса, длительность импульса
имс	
3 усил	ителях на ИМС применяют непосредственную связь между
C	
ВС	олноводами
C	
ЭЛ	лектронно-дырочной парой
C	
ка	аскадами усиления
имс2	2
Для по	олучения в усилителях на ИМС постоянного напряжения применяют
C	варикапы
C	

генераторы постоянного тока

T1 Предназначение транзисторного ключа: Замыкание и размыкание цепи нагрузки под действием управляющего входного сигнала ○ размыкания цепи, при прохождении тока большой мощности преобразования электрической энергии в тепловую У1 Требования к усилителям выражаются в обеспечении требуемого коэффициента усиления падения мощности в цепи стабилизации тока У2 Наибольший КПД усилительного устройства получают в режиме активном с отсечкой выходного тока эмиттерном

○ источники переменного тока

У3

Передачу части мощности выходного сигнала с выхода усилителя на его вход, т.е. в направлении обратном усилению называют
обратной связью
фотоэффектом
общей связью
У4
Вид обратной связи(ОС) чаще всего используемой в усилителях
оптическая
положительная
электрическая
У5
Какой обратной связью может осуществляться стабилизация режима работы по напряжению, току или комбинированной
Отрицательной
Электродной
Квазистатической
малосигнальные параметры

малосигнальные параметры

В транзисторной технике широкое применение получила система следующих внешних малосигнальных параметров:

	h - параметров
	Z-параметров
	Ү - параметров
опт	-1
Эле эле	ктронное устройство преобразующее оптический(световой) сигнал в ктрический ток называется
	фотоприёмник
	анод
	катушка индуктивности
опт	-2
Эле опті	ктронное устройство преобразующее электрический сигнал в ическое(световое) излучение называется
	фоторезистор
	фотоизлучатель
	конденсатор
ОПТ	-3
	реимуществам оптоэлектронных приборов относится:
	ACMININGCETOUR VITIVATERIDOTHIDIA HUMUUUUD UTAUUMTUJI.

большая потребляемая мощность(расход энергии)
высокая помехозащищённость
осложность изготовления устройств, обрабатывающих сигнал
УГО1
Изображено Условное Графическое Изображение(УГО)
Выпрямительный Диод
Полевой транзистор
Биполярный транзистор
УГО2
Изображено Условное графическое изображение(УГО):
резистор○
варикап
транзистор
VEO 2
УГОЗ
Изображено условное графическое изображение(УГО):
биполярного транзистора
резистора

○ стабилитрона УГО4 На рисунке условное графическое обозначение(УГО) Полевого транзистора Диода конденсатора УГО5 На рисунке представлено условное графическое обозначение: фоторезистора диода катушки индуктивности УГО6 На рисунке показано условное графическое обозначение(УГО): резистора фотодиода транзистора

Отправить